Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(4)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35214348

RESUMO

Limited-view Computed Tomography (CT) can be used to efficaciously reduce radiation dose in clinical diagnosis, it is also adopted when encountering inevitable mechanical and physical limitation in industrial inspection. Nevertheless, limited-view CT leads to severe artifacts in its imaging, which turns out to be a major issue in the low dose protocol. Thus, how to exploit the limited prior information to obtain high-quality CT images becomes a crucial issue. We notice that almost all existing methods solely focus on a single CT image while neglecting the solid fact that, the scanned objects are always highly spatially correlated. Consequently, there lies bountiful spatial information between these acquired consecutive CT images, which is still largely left to be exploited. In this paper, we propose a novel hybrid-domain structure composed of fully convolutional networks that groundbreakingly explores the three-dimensional neighborhood and works in a "coarse-to-fine" manner. We first conduct data completion in the Radon domain, and transform the obtained full-view Radon data into images through FBP. Subsequently, we employ the spatial correlation between continuous CT images to productively restore them and then refine the image texture to finally receive the ideal high-quality CT images, achieving PSNR of 40.209 and SSIM of 0.943. Besides, unlike other current limited-view CT reconstruction methods, we adopt FBP (and implement it on GPUs) instead of SART-TV to significantly accelerate the overall procedure and realize it in an end-to-end manner.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Artefatos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos
2.
Sensors (Basel) ; 22(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35214364

RESUMO

Restricted by the diversity and complexity of human behaviors, simulating a character to achieve human-level perception and motion control is still an active as well as a challenging area. We present a style-based teleoperation framework with the help of human perceptions and analyses to understand the tasks being handled and the unknown environment to control the character. In this framework, the motion optimization and body controller with center-of-mass and root virtual control (CR-VC) method are designed to achieve motion synchronization and style mimicking while maintaining the balance of the character. The motion optimization synthesizes the human high-level style features with the balance strategy to create a feasible, stylized, and stable pose for the character. The CR-VC method including the model-based torque compensation synchronizes the motion rhythm of the human and character. Without any inverse dynamics knowledge or offline preprocessing, our framework is generalized to various scenarios and robust to human behavior changes in real-time. We demonstrate the effectiveness of this framework through the teleoperation experiments with different tasks, motion styles, and operators. This study is a step toward building a human-robot interaction that uses humans to help characters understand and achieve the tasks.


Assuntos
Robótica , Controle Comportamental , Humanos , Movimento (Física) , Robótica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...